Все для детей


Группы нашего сайта в социальных сетях RSS-лента сайта Allforchildren.ru. Подпишись на новости по e-mail! Группа сайта Allforchildren.ru в Одноклассниках Группа сайта Allforchildren.ru ВКонтакте Канал Allforchildren.ru Media на Youtube (мастер-классы, сказки) Группа сайта  Allforchildren.ru в Facebook Лента сайта Allforchildren.ru в Twitter Канал Allforchildren.ru на Youtube (песни из фильмов и мультфильмов, учебная фильмотека)
Помоги цветочку вырасти: кликни на лепесток твоей любимой социальной сети и присоединяйся к нашей группе. Чем больше друзей сайта в соцсетях, тем пышнее наш с вами цветок!

Книга замечаний и предложений

Книга замечаний и предложений

Сергей Венецкий
РАССКАЗЫ О МЕТАЛЛАХ

АЛЮМИНИЙ

"СЕРЕБРО" ИЗ ГЛИНЫ

Тиберий устраняет опасность.Роскошный камзол императора.Сенсация Парижской выставки.Банкет во дворце.Дерзновенный проект.Медаль, решившая спор."Везде алюминий и алюминий".Словно сговорившись.Загадки китайской гробницы.Прозорливость инженера.Вильм не верит своим глазам."Этажерки" сходят со сцены.По заснеженным полям. — Экспонат меняет паспорт.Нет худа без добра."Эхо" отражает сигналы."Алюминаут" погружается в пучину.Между Москвой и Ленинградом."Церковь святого Алюминия".Откроется ли пивной бар?На часах и в груди.Пой, гитара!Одеяло в портсигаре.Вместо Луны.Как дела на Марсе?Алюминий из … мусора.

Древний историк Плиний Старший рассказывает об интересном событии, которое произошло почти два тысячелетия назад. Однажды к римскому императору Тиберию пришел незнакомец. В дар императору он преподнес изготовленную им чашу из блестящего, как серебро, но чрезвычайно легкого металла. Мастер поведал, что этот никому не известный металл он сумел получить из глинистой земли. Должно быть, чувство благодарности редко обременяло Тиберия, да и правителем он был недальновидным. Боясь, что новый металл с его прекрасными свойствами обесценит хранившиеся в казне золото и серебро, он приказал отрубить изобретателю голову, а его мастерскую разрушить, чтобы никому не повадно было впредь заниматься производством "опасного" металла.

Быль это или легенда - трудно сказать. Но так или иначе "опасность" миновала и, к сожалению, надолго. Лишь в XVI веке, т.е. спустя примерно полторы тысячи лет, в историю алюминия была вписана новая страница. Это сделал талантливый немецкий врач и естествоиспытатель Филипп Ауреол Теофраст Бомбаст фон Гогенгейм, вошедший в историю под псевдонимом Парацельс. Исследуя различные вещества и минералы, в том числе квасцы, ученый установил, что они "есть соль некоторой квасцовой земли", в состав которой входит оксид неизвестного металла, впоследствии названный глиноземом.

Квасцы, заинтересовавшие Парацельса, были известны с давних времен. По свидетельству греческого историка Геродота, жившего в V веке до н.э., древние народы применяли при крашении тканей для закрепления их цвета минеральную породу, которую они называли "алюмен", т.е. "вяжущая". Этой породой и были квасцы.

Примерно к VIII - IX векам относятся первые упоминания об изготовлении квасцов в Древней Руси, где их также использовали для окраски тканей и приготовления сафьяновых кож. В средние века в Европе уже действовало несколько заводов для производства квасцов.

В 1754 году немецкий химик Андреас Сигизмунд Маргграф сумел выделить "квасцовую землю", о которой за два столетия до этого писал Парацельс. Прошло еще несколько десятков лет, прежде чем англичанин Гэмфри Дэви попытался получить металл, скрывающийся в квасцах. В 1807 году ему удалось электролизом щелочей открыть натрий и калий, но разложить с помощью электрического тока глинозем он так и не сумел. Подобные же попытки предпринял спустя несколько лет швед Йенс Якоб Берцелиус, но и его работы не увенчались успехом. Несмотря на это, ученые все же решили дать неподдающемуся металлу имя: сначала Берцелиус назвал его алюмием, а затем Дэви изменил алюмий на алюминий.

Первым, кому удалось, подобно неизвестному мастеру Древнего Рима, получить металлический алюминий, был датский ученый Ганс Христиан Эрстед. В 1825 году в одном из химических журналов он опубликовал свою статью, в которой писал, что в результате проведенных им опытов образовался "кусок металла, цветом и блеском несколько похожий на олово". Однако журнал этот был не очень известен, и сообщение Эрстеда осталось почти незамеченным в научном мире. Да и сам ученый, поглощенный работами по электромагнетизму, не придавал своему открытию большого значения.
Спустя два года в Копенгаген к Эрстеду приехал молодой, но уже известный немецкий химик Фридрих Вёлер. Эрстед сообщил ему, что не намерен продолжать опыты по получению алюминия. Вернувшись в Германию, Вёлер немедленно занялся этой проблемой, весьма заинтересовавшей его, и уже в конце 1827 года опубликовал свой метод получения нового металла. Правда, метод Вёлера позволял выделять алюминий лишь в виде зерен, величиной не более булавочной головки, но ученый продолжал эксперименты до тех пор, пока не сумел, наконец, разработать способ получения алюминия в виде компактной массы. На это ему потребовалось ... восемнадцать лет.

К тому времени новый металл уже успел завоевать популярность и, поскольку получали его в мизерных количествах, цены на него превышали цены на золото, да и достать его было делом не простым.

Немудрено, что когда один из европейских монархов приобрел в личное пользование камзол с алюминиевыми пуговицами, он начал свысока посматривать на других правителей, которым такая роскошь была не по карману. Тем же не оставалось ничего другого, как только завидовать счастливому обладателю редчайших пуговиц и с тихой грустью дожидаться лучших времен.

К их великой радости ждать пришлось недолго: уже в 1855 году на Всемирной выставке в Париже экспонировалось "серебро из глины", вызвавшее большую сенсацию. Это были пластины и слитки алюминия, которые сумел получить французский ученый и промышленник Анри Этьенн Сент-Клер Девиль.

Появлению этих экспонатов предшествовали следующие события. Императором Франции в то время был Наполеон III - "маленький племянник великого дяди", как называли его тогда. Большой любитель пустить пыль в глаза, он устроил однажды банкет, на котором члены монаршей семьи и наиболее почетные гости были удостоены чести есть алюминиевыми ложками и вилками. Гостям же попроще пришлось пользоваться обычными (для императорских банкетов, разумеется) золотыми и серебряными приборами. Конечно, было обидно до слез, и кусок не лез в горло, но что поделаешь, если даже император не мог тогда обеспечить каждого гостя алюминием по потребности. Когда же судьба подарила французскому монарху наследного принца, счастливый папаша на радостях заказал придворному ювелиру роскошную погремушку из алюминия, золота и драгоценных камней.

Вскоре в голове Наполеона III созрел дерзновенный проект, который сулил славу и почет, но, главное, должен был заставить государей других стран позеленеть от зависти: император решил снабдить солдат своей армии доспехами из алюминия. Он предоставил Сент-Клер Девилю крупные средства, чтобы тот изыскал способ получения алюминия в больших количествах. Сент-Клер Девиль, положив в основу своих экспериментов метод Вёлера, сумел разработать соответствующую технологию, но металл, полученный им, продолжал оставаться весьма дорогим. Именно поэтому французским солдатам так и не довелось примерить обещанные доспехи, но о своей личной охране император позаботился: его телохранители начали щеголять в новеньких алюминиевых кирасах (латах). Получение Сент-Клер Девилем чистого алюминия бонапартистские круги Франции пытались использовать для раздувания националистического угара: они повсюду трубили о якобы французском приоритете в открытии этого металла. К чести Сент-Клер Девиля он отреагировал на эти "приписки", как подобает настоящему ученому, и к тому же весьма оригинально: из алюминия собственного производства он отчеканил медаль с портретом Фридриха Вёлера и датой "1827" и послал ее в подарок немецкому ученому.

К этому периоду и относится появление "серебра Девиля" в качестве экспоната на Всемирной выставке. Быть может, ее устроители и отнесли алюминий к металлам широкого потребления, но, увы, от этого он не стал доступнее. Правда, уже тогда передовые люди понимали, что пуговицы и кирасы - лишь незначительный эпизод в деятельности алюминия. Впервые увидев алюминиевые изделия, Н. Г. Чернышевский с восторгом сказал: "Этому металлу суждено великое будущее! Перед вами, друзья, металл социализма". В его романе "Что делать?", вышедшем в 1863 году, есть такие строки: "...Какая легкая архитектура этого внутреннего дома, какие маленькие простенки между окнами, - окна огромные, широкие, во всю вышину этажей... Но какие эти полы и потолки? Из чего эти двери и рамы окон? Что это такое? Серебро? Платина?... Ах, знаю теперь, Саша показывал мне такую дощечку, она была легка, как стекло, и теперь уже есть такие серьги, броши; да, Саша говорил, что рано или поздно алюминий заменит собой дерево, может быть и камень. Но как же все это богато. Везде алюминий и алюминий... Вот в этом зале половина пола открыта, тут и видно, что он из алюминия...".
Но когда писались эти пророческие строки, алюминий, по-прежнему оставался главным образом ювелирным металлом. Интересно, что даже в 1889 году, когда Д.И. Менделеев находился в Лондоне, ему в знак признания его выдающихся заслуг в развитии химии был преподнесен ценный подарок - весы, сделанные из золота и алюминия.

Сент-Клер Девиль развил бурную деятельность. В местечке Ла-Гласьер он построил первый в мире алюминиевый завод. Однако в процессе плавки завод выделял много вредных газов, которые загрязняли атмосферу Ла-Гласьера. Местные жители, дорожившие своим здоровьем, не пожелали жертвовать им ради технического прогресса и обратились с жалобой к правительству. Завод пришлось перенести сначала в предместье Парижа, а позднее на юг Франции.

Однако к этому времени для многих ученых уже стало ясно, что, несмотря на все старания Сент-Клер Девиля, его метод не имеет перспектив. Химики разных стран продолжали поиски. В 1865 году русский ученый Н.Н. Бекетов предложил интересный способ, который быстро нашел применение на алюминиевых заводах Франции и Германии.

Важной вехой в истории алюминия стал 1886 год, когда независимо друг от друга американец Чарльз Мартин Холл и француз Поль Луи Туссен Эру разработали электролитический способ производства этого металла (История науки и техники знает немало примеров, когда двум ученым в один и тот же год удавалось прийти к одинаковым выводам или открытиям. Данное совпадение "усугубляется" тем, что Холл и Эру родились в 1863 году, а скончались оба изобретателя, словно сговорившись, в 1914 году.). Идея была не нова: еще в 1854 году немецкий ученый Бунзен высказал мысль о получении алюминия электролизом его солей. Но прошло более тридцати лет, прежде чем эта мысль получила практическое воплощение. Поскольку электролитический способ требовал большого количества энергии, первый в Европе завод для производства алюминия электролизом был построен в Нейгаузене (Швейцария) близ Рейнского водопада - дешевого источника тока.

И сегодня, спустя целое столетие, без электролиза немыслимо получение алюминия. Именно это обстоятельство и заставляет ученых ломать голову над весьма загадочным фактом. В Китае есть гробница известного полководца Чжоу Чжу, умершего в начале III века. Сравнительно недавно некоторые элементы орнамента гробницы были подвергнуты спектральному анализу. Результат оказался настолько неожиданным, что анализ пришлось несколько раз повторить. И каждый раз беспристрастный спектр неопровержимо свидетельствовал о том, что сплав, из которого древние мастера выполнили орнамент, содержит 85% алюминия. Но каким же образом удалось получить в III веке этот металл?

Ведь с электричеством человек тогда был знаком разве что по молниям, а они вряд ли соглашались принять участие в электролитическом процессе. Значит, остается предположить, что в те далекие времена существовал какой-то другой способ получения алюминия, к сожалению, затерявшийся в веках.

К концу прошлого столетия производство алюминия резко возросло и, как следствие, значительно снизились цены на этот металл, еще не так давно считавшийся драгоценным. Разумеется, для ювелиров он уже не представлял никакого интереса, зато сразу приковал к себе внимание промышленного мира, находившегося в преддверии больших событий: начинало бурно развиваться машиностроение, становилась на ноги автомобильная промышленность и, что особенно важно, вот-вот должна была сделать первые шаги авиация, где алюминию предстояло сыграть важнейшую роль. В 1893 году в Москве вышла книга инженера Н. Жукова "Алюминий и его металлургия", в которой автор писал: "Алюминий призван занять выдающееся место в технике и заместить собой, если не все, то многие из обыденных металлов...". Для такого утверждения имелись основания: ведь уже тогда были известны замечательные свойства "серебра из глины". Алюминий - один из самых легких металлов: он примерно втрое легче меди или железа. По теплопроводности и электропроводности он уступает лишь серебру, золоту и меди. В обычных условиях этот металл обладает достаточной химической стойкостью. Высокая пластичность алюминия позволяет прокатывать его в фольгу толщиной в несколько микрон, вытягивать в тончайшую, как паутина, проволоку; при длине 1000 метров она весит всего 27 граммов и умещается в спичечной коробке. И лишь прочностные характеристики алюминия оставляют желать лучшего. Это обстоятельство и побудило ученых задуматься над тем, как сделать металл прочнее, сохранив все его полезные качества. Издавна было известно, что прочность многих сплавов зачастую гораздо выше, чем чистых металлов, входящих в их состав. Вот почему металлурги и занялись поисками таких компаньонов для алюминия, которые, вступив с ним в союз, помогли бы ему окрепнуть. Вскоре пришел успех. Как не раз бывало в истории науки, едва ли не решающую роль при этом сыграли случайные обстоятельства. Впрочем, расскажем все по порядку. Однажды (это было в начале XX века) немецкий химик и металлург Альфред Вильм приготовил сплав, в который, помимо алюминия, входили различные добавки: медь, магний, марганец. Прочность этого сплава была выше, чем у чистого алюминия, но Вильм чувствовал, что сплав можно еще более упрочить, подвергнув его закалке. Ученый нагрел несколько образцов сплава примерно до 600°С, а затем опустил их в воду. Закалка заметно повысила прочность сплава, но, поскольку результаты испытаний различных образцов оказались неоднородными, Вильм усомнился в исправности прибора и точности измерений.

Несколько дней исследователь тщательно выверял прибор. Забытые им на время образцы лежали без дела на столе, и к тому моменту, когда прибор был вновь готов к работе, они оказались уже не только закаленными, но и запыленными. Вильм продолжил испытания и не поверил своим глазам: прибор показывал, что прочность образцов возросла чуть ли не вдвое.

Вновь и вновь повторял ученый свои опыты и каждый раз убеждался, что его сплав после закалки продолжает в последующие дни становиться все прочнее и прочнее. Так было открыто интересное явление - естественное старение алюминиевых сплавов после закалки.

Сам Вильм не знал, что происходит с металлом в процессе старения, но, подобрав опытным путем оптимальный состав сплава и режим термической обработки, он получил патент и вскоре продал его одной немецкой фирме, которая в 1911 году выпустила первую партию нового сплава, названного дюралюминием (Дюрен - город, где было начато промышленное производство сплава). Позже этот сплав стали называть дуралюмином.

В 1919 году появились первые самолеты из дуралюмина. С тех пор алюминий навсегда связал свою судьбу с авиацией. Он по праву заслужил репутацию "крылатого металла", превратив примитивные деревянные "этажерки" в гигантские воздушные лайнеры. Но в те годы его еще не хватало, и многие самолеты, главным образом легких типов, продолжали изготовлять из дерева.

В нашей стране производством алюминиевых сплавов занимался тогда лишь Кольчугинский завод по обработке цветных металлов, который выпускал в небольших количествах кольчугалюминий - сплав, по составу и свойствам сходный с дуралюмином. Из этого сплава молодой авиаконструктор А.Н. Туполев изготовил сначала аэросани, которые успешно выдержали испытания на бескрайних заснеженных полях. После такой предварительной проверки кольчугалюминию предстояло подняться в воздух: в 1924 году из него был построен первый советский металлический самолет "АНТ-2".

На повестку дня стал вопрос о создании мощной алюминиевой промышленности. В начале 1929 года в Ленинграде на заводе "Красный Выборжец" были проведены опыты по получению алюминия. Руководил ими П.П. Федотьев - ученый, с именем которого связаны многие страницы истории "крылатого металла". 27 марта 1929 года удалось получить первые 8 килограммов металла. "Этот момент, - писал впоследствии Федотьев, - можно считать возникновением производства алюминия в СССР на волховской энергии и целиком из материалов собственного приготовления". В ленинградской печати отмечалось тогда, что "первый слиток алюминия, представляющий музейную ценность, должен быть сохранен как памятник одного из крупнейших достижений советской техники". Образцы алюминия, полученного в дальнейшем на "Красном Выборжце", и изделия из него были,преподнесены от трудящихся Ленинграда V Всесоюзному съезду Советов.

Успешное проведение промышленных опытов позволило приступить к сооружению Волховского и Днепровского алюминиевых заводов. В 1932 году вступил в строй первый из них, а спустя год - второй.

В этот же период значительные природные запасы алюминиевых руд были обнаружены на Урале. Любопытна предыстория их открытия. В 1931 году молодой геолог Н.А. Каржавин в музее одного из уральских рудников обратил внимание на экспонат, считавшийся железной рудой с низким содержанием железа. Геолога поразило сходство этого образца с бокситами - глинистой горной породой, богатой алюминием. Подвергнув минерал анализу, он убедился, что "бедная железная руда" является отличным алюминиевым сырьем. Там, где был найден этот образец, начались геологические поиски, которые вскоре увенчались успехом. На базе найденных месторождений был построен Уральский алюминиевый завод, а спустя несколько лет (уже в годы войны) - Богословский, который выдал свою первую продукцию в исторический День Победы - 9 мая 1945 года.

Любопытно, что в годы второй мировой войны, когда некоторые воюющие государства испытывали нехватку бокситов - основного алюминиевого сырья, Италия, например, получала алюминий из... лавы Везувия. Примерно тогда же богатые залежи бокситов были обнаружены на острове Ямайка, причем произошло это при довольно забавных обстоятельствах. Один из жителей острова надумал как-то заняться разведением помидоров. Высадил он на своей плантации рассаду и стал ждать урожая. Но не тут-то было: вся рассада зачахла и быстро погибла. Повторная попытка закончилась для любителя томатов столь же плачевно. Горько сетуя на явную несправедливость со стороны фортуны, незадачливый овощевод решил докопаться до причины неудач и послал пробу своей не слишком щедрой почвы на анализ в одну из лабораторий США с просьбой объяснить, почему на ней не растут помидоры. Ответ не заставил себя долго ждать. Смысл его сводился к следующему: "Какие же помидоры может родить земля, состоящая на 99% из бокситов?" Прошло всего несколько лет, и на землях Ямайки вместо помидоров выросли горнодобывающие предприятия, продукция которых поступает сегодня на заводы многих стран, производящих алюминий.

Потребность в этом металле постоянно растет. Главным заказчиком алюминиевой промышленности по-прежнему остается авиация: алюминий занимает первое место среди металлов, применяемых в самолетостроении. С освоением космоса "крылатый металл" обрел поклонников и среди конструкторов ракетной техники. Из алюминиевых сплавов была выполнена оболочка первого советского искусственного спутника Земли. В 1960 году США запустили спутник "Эхо-1", предназначенный для отражения радиосигналов. Это был огромный, диаметром 30 метров, шар, изготовленный из полимерной пленки, покрытой тончайшим слоем алюминия. Несмотря на внушительные размеры, спутник весил всего 60 килограммов. Алюминиевые сплавы, надежно работающие в широком температурном интервале - от абсолютного нуля до 200°С, были выбраны в качестве конструкционного материала для баков с жидким водородом и жидким кислородом американских ракет "Сатурн".

Фольга из чистейшего алюминия служила флуоресцирующим экраном, установленным на одном из спутников для исследования испускаемых Солнцем заряженных частиц. Когда американские космонавты Нейл Армстронг и Эдвин Олдрин высадились на Луну, они расстелили на ее поверхности лист такой же фольги: в течение двух часов она подвергалась воздействию газов, излучаемых Солнцем. Покидая Луну, космонавты захватили с собой эту фольгу и образцы лунных пород, которые они упаковывали в специальные алюминиевые коробки. Алюминий принимает участие в овладении не только космическими высотами, но и морскими безднами. В США была создана океанографическая подводная лодка "Алюминаут", которая может погружаться на глубину 4600 метров. Новый сверхглубинный корабль построен не из стали, как обычно принято, а из алюминия.

Желанный гость он и на транспорте. В нашей стране завершены работы по созданию железнодорожного суперэкспресса, который начал курсировать между Москвой и Ленинградом. Своими формами этот поезд напоминает фюзеляж современного самолета, да и мчится он со скоростью взлетающего "Ту": на некоторых участках пути его скорость достигает 200 километров в час. Конструкторы предложили изготовить вагоны экспресса из алюминиевого сплава. Опытный кузов прошел суровые испытания: его сжимали с огромной силой, подвергали тяжелейшей вибрационной тряске и другим "экзекуциям", но металл все выдержал. И вот уже светло-голубой состав стремительно несется по нашим необъятным просторам.

Алюминий без работы не останется...

Алюминий обладает высокой коррозионной стойкостью. Этим он обязан тончайшей пленке, которая возникает на его поверхности и служит в дальнейшем броней, защищающей металл от кислорода. Не будь этой пленки-брони, алюминий вспыхивал бы даже на воздухе и сгорал ослепительным пламенем. Спасительный панцирь позволяет алюминиевым деталям служить десятки лет даже в такой вредной для "здоровья" металлов отрасли, как химическая промышленность.

Ученые установили, что алюминий обладает еще одним ценным свойством: он не разрушает витамины. Поэтому из него изготовляют аппаратуру для маслобойной, сахарной, кондитерской, пивоваренной промышленности. Не случайно именно в алюминиевых тубах отправляются в космос разнообразные вкусные блюда и фруктовые соки, входящие в рацион космонавтов. Да и на Земле этот металл уже получил приглашение на постоянную работу в консервную промышленность, где он с успехом заменяет традиционную белую жесть.

Прочные позиции завоевал алюминий и в строительстве. Еще в 1890 году в одном из американских городов он был впервые применен при постройке жилого дома. Спустя несколько десятилетий все алюминиевые детали находились в прекрасном состоянии. Первая алюминиевая крыша, поставленная в конце прошлого века, стоит без ремонта по сей день.

На территории Московского Кремля из алюминия и пластмасс сооружен величественный Дворец съездов. На Всемирной выставке в Брюсселе из стекла и алюминия был построен поражавший красотой павильон Советского Союза. Мосты, здания, гидротехнические объекты, ангары - везде находит применение чудесный легкий металл. В Западном Берлине сооружена церковь в ультрасовременном стиле с литыми алюминиевыми воротами. Здешние остряки называют ее поэтому "церковью святого Алюминия". Поговаривают, будто бы из этого же металла власти острова Родос намереваются соорудить копию Колосса Родосского, украшавшего в III веке до н.э. вход в гавань на острове Родос в Эгейском море. По проекту внутри головы возрожденного чуда света намечено разметить... пивной бар.

Важная область применения алюминия - электротехническая промышленность. Из него делают провода высоковольтных линий передач, обмотки электродвигателей и трансформаторов, кабели, цоколи ламп, конденсаторы и многие другие изделия.

В металлургии алюминий давно и успешно используется как раскислитель для удаления из стали кислорода. Алюминиевая крупка - основной компонент термитных смесей, применяемых при алюминотермических процессах получения многих сплавов.

Чтобы хотя бы перечислить все сферы деятельности этого поистине универсального металла, понадобиться не один десяток страниц книги. Упомянем лишь о наиболее интересных из них. Так, из литого алюминия изготовлены массивные цифры на самых больших часах нашей страны, украшающих здание Московского государственного университета. Полиуретан и алюминий послужили материалом для первого искусственного сердца человека: после операции, проведенной в 1982 году, оно в течение нескольких месяцев "билось" в груди американца Барни Кларка. Как полагают специалисты, алюминиевые колеса без протекторов, установленные на сигарообразной машине с реактивным двигателем, позволили английскому инженеру Ричарду Ноблу стать в 1983 году обладателем мирового рекорда скорости на суше - 1019,7 километра в час.

Алюминий сегодня - это морские суда и яхты, переносные дороги для болотистой местности и складывающиеся летние трассы для тренировки лыжников, скрипки и гитары, не уступающие по звучанию деревянным инструментам, теннисные ракетки и вечные обои, автомобильные двигатели и даже... танковая броня. "Крылатый металл" можно встретить и в коллекциях филателистов: в 1955 году в Венгрии к двадцатой годовщине алюминиевой промышленности этой страны была выпущена необычная почтовая марка, отпечатанная на фольге из алюминия толщиной 0,009 миллиметра. Рисунок на марке изображает алюминиевый комбинат и летящий над ним самолет. Позднее подобные марки появились и в других странах.

Замечательным свойством обладает алюминированная ткань: она "умеет" и согревать, и охлаждать. Занавеси на окнах из этой ткани, если их повесить металлом наружу, пропустят световые лучи, но отразят тепловые - в жаркий летний день в комнате будет прохладно. Зимой же занавеси следует перевернуть; тогда они будут возвращать тепло в помещение. В плаще из такой ткани можно не бояться ни жары и ни холода. Чтобы спастись от палящих солнечных лучей, плащ нужно будет носить металлом наружу. Если же на улице похолодает - выверните его наизнанку, и металл возвратит тепло вашему телу. В Чехословакии выпускаются очень удобные алюминированные одеяла, которые одинаково хороши и в теплых, и в прохладных помещениях. К тому же весят они всего 55 граммов и в свернутом виде легко умещаются в футляре размером не более обычного портсигара. Можно не сомневаться, что геологи, туристы, рыбаки - словом, все те, кого опаляет солнце и овевают ветры, по достоинству оценят куртки и палатки из такой ткани. В жарких краях большим спросом будут пользоваться "алюминиевые" тюбетейки, панамы, халаты, зонтики. Металлизированная одежда сделает профессию сталевара менее горячей. Поможет она и пожарным в их тяжелой борьбе с огнем.

Тончайшей алюминиевой пленкой покрыто многотонное шестиметровое зеркало крупнейшего в мире телескопа, созданного в СССР; этот дальнозоркий "глаз", обращенный в глубины Вселенной способен увидеть свет обычной свечки на расстоянии 25 тысяч километров. А американские ученые предложили использовать для ночного освещения городов гигантские зеркала из пластмассы с алюминиевым покрытием: доставленные транспорт-ными космическими кораблями на стационарную орбиту и управляемые с помощью ЭВМ, макси-зеркала будут отражать солнечный свет в десятки раз интенсивнее, чем это делает сейчас по ночам Луна.

Позолоченная алюминиевая пластинка отправилась в дальний путь на борту американской межпланетной космической станции "Пионер-2": на этой визитной карточке Земли выгравировано символическое изображение, которое расскажет представителям иных цивилизаций о нашей планете.

Алюминий из мусораВ последнее время ученые и инженеры большое внимание уделяют созданию совершенно новых материалов - пенометаллов. Уже разработана технология получения пеноалюминия - первенца в этом замечательном семействе. Новый материал поразительно легок: 1 кубический сантиметр некоторых видов пеноалюминия весит менее 0,2 грамма. Пробка, всегда служившая эталоном легкости, не в состоянии конкурировать с этим материалом: она на 25-30 % тяжелее. Вслед за пеноалюминием появились пенобериллий, пенотитан и многие другие удивительные материалы.

...Известный английский писатель-фантаст Герберт Уэллс в своем романе "Война миров", созданном на рубеже XIX и XX веков, описывает машину, с помощью которой марсиане производили алюминий: "От заката солнца до появления звезд эта ловкая машина изготовила не менее сотни полос алюминия непосредственно из глины".

Один из американских исследователей космоса в те годы, когда наше знакомство с Луной было лишь визуальным, предложил любопытную гипотезу. Ученый считал, что на каждом гектаре лунной поверхности можно встретить до сотни тонн чистого алюминия. Он высказывал соображение, что Луна является как бы гигантским природным заводом, в котором так называемый "солнечный ветер" (поток излучаемых Солнцем протонов) превращает руды железа, магния, алюминия в чистые металлы. Пока эта гипотеза не подтвердилась, тем не менее, как показал анализ образцов лунного грунта, доставленных американскими космонавтами и советскими автоматическими станциями, содержание в нем оксида алюминия довольно высокое. И все же доля истины в рассуждениях этого ученого, видимо, есть: в пробе лунного грунта, взятой автоматической станцией "Луна-20" в континентальной части нашего спутника - между Морем Кризисов и Морем Изобилия, удалось обнаружить три крохотные крупицы самородного алюминия размером в десятые доли миллиметра (в земных же условиях природный чистый алюминий даже в столь миниатюрном виде не сыщешь, как говорится, днем с огнем).

Стало быть, можно считать, что на Марсе и на Луне "алюминиевая проблема" решена. А как обстоит дело на Земле? Что ж, пожалуй, и здесь все благополучно. Хотя на нашей планете нет пока машин, подобных марсианским, и на ее поверхности алюминий не валяется тоннами, все же землянам жаловаться грех: природа щедро позаботилась о том, чтобы люди не испытывали нужды в этом чудесном металле. По содержанию в земной коре алюминий уступает лишь кислороду и кремнию, значительно превосходя все металлы.

Природа богата, но человек должен быть бережливым хозяином ее даров. Существует немало проектов и уже действующих установок по извлечению ценных компонентов из отходов, поступающих на городские свалки. В установках, в частности, предусмотрено оригинальное электромагнитное устройство для "добычи" из мусора алюминия. Но ведь магнитное поле не действует на алюминий? Как же с его помощью удается извлечь этот металл? Оказывается, если возбудить в алюминиевом предмете переменный ток, перемещая его в соответствующем электрическом поле, то металл на какое-то время намагничивается. В этом состоянии он и попадает в "руки" магнитов.

Итак, алюминиевым сырьем мы обеспечены. Создать же оригинальные агрегаты, усовершенствовать способы получения "крылатого металла", найти ему новые области применения - это забота инженеров и ученых.

Понравилось? Расскажи об этой странице друзьям!

Как назвать будущего ребенка
Рассылки Subscribe.Ru
Новости и обновления
на сайте "Все для детей"




Система Orphus
 
Рейтинг@Mail.ru